Inner Product Algebra

In this article, we give some useful algebraic tricks for inner products that will be useful in deriving range proofs (and encoding circuits as inner products) later. Each rule will be accompanied by a simple proof.

Notation

Variables in bold, like $\mathbf{a}$, denote a vector. Variables not in bold, like $v$, denote a scalar. The operator $\circ$ is the Hadamard product (elementwise multiplication) of two vectors, i.e. $[a_1, \dots, a_n]\circ[b_1, \dots, b_n] = [a_1b_1, \dots, a_nb_n]$. We use the shorthand “lhs” and “rhs” to refer to the “left-hand side” and “right-hand side” of an equation, respectively. A “summand” is an element of an addition, e.g. if $a + b = c$, then $a$ and $b$ would be called summands. The $\mathbf{1}$ vector is a vector of all ones, i.e. $[1, 1, \dots, 1]$. All vectors are implied to be of the same length $n$ unless otherwise stated.

Rule 1: An inner product where one of the vectors is a sum of vectors can be expanded

Suppose we’re calculating an inner product where one of the vectors is a sum of two vectors – for example $\langle\mathbf{a} + \mathbf{b}, \mathbf{c}\rangle$. We can split this up into the sum of two inner products: $\langle \mathbf{a} + \mathbf{b}, \mathbf{c} \rangle = \langle \mathbf{a}, \mathbf{c}\rangle + \langle \mathbf{b}, \mathbf{c} \rangle$

Proof: The lhs can be written as $$ \sum_{i=1}^n(a_i+b_i)c_i $$

The rhs can be written as

$$ \begin{align*} \sum_{i=1}^na_ic_i+\sum_{i=1}^nc_ib_i &=\sum_{i=1}^n(a_ic_i+c_ib_i) \\ &=\sum_{i=1}^n(a_i+b_i)c_i \end{align*} $$

Rule 2: Inner products with common terms can be combined

The two inner products on the lhs below have a common vector of $\mathbf{c}$. Therefore, they can be combined: $$\langle \mathbf{a}, \mathbf{c}\rangle + \langle \mathbf{b}, \mathbf{c} \rangle = \langle \mathbf{a} + \mathbf{b}, \mathbf{c} \rangle$$

This is really Rule 1 with the lhs and the rhs swapped.

The proof is the same as Rule 1.

Rule 3: Moving vectors to the other side of the inner product

An inner product can be re-written as the $\mathbf{1}$ vector with the Hadamard product of the original vectors: $$\langle \mathbf{a}, \mathbf{b} \rangle= \langle \mathbf{1}, \mathbf{a\circ b} \rangle$$

Proof:

$$\begin{align*} \langle \mathbf{a}, \mathbf{b} \rangle&=\sum_{i=1}^na_ib_i \\ \langle \mathbf{1}, \mathbf{a\circ b} \rangle&=\sum_{i=1}^n1*(a_ib_i)\\ \sum_{i=1}^na_ib_i &= \sum_{i=1}^n1*(a_ib_i)\\ \end{align*}$$

Rule 4: We can add vectors to one of the terms of the inner product to force two inner products to have common terms

Suppose we’re adding an inner product $\langle\mathbf{x}, \mathbf{b}+\mathbf{c}\rangle$ and an inner product $\langle\mathbf{y}, \mathbf{b}\rangle$, and the sum of the inner products is $v$. Note that they have different components, so we can’t add them with Rule 2. Nevertheless, the following equality

$$\langle \mathbf{x}, \mathbf{b} + \mathbf{c}\rangle + \langle \mathbf{y}, \mathbf{b}\rangle = v$$

can be written as

$$\langle \mathbf{x} + \mathbf{y}, \mathbf{b} + \mathbf{c}\rangle = v + \langle\mathbf{y},\mathbf{c}\rangle$$

In the above scenario, we can add $\langle\mathbf{y},\mathbf{c}\rangle$ to both sides.

$$\begin{align*} \langle \mathbf{x}, \mathbf{b} + \mathbf{c}\rangle + \langle \mathbf{y}, \mathbf{b}\rangle + \boxed{\langle\mathbf{y},\mathbf{c}\rangle}&= v + \boxed{\langle\mathbf{y},\mathbf{c}\rangle}\\ \langle \mathbf{x}, \mathbf{b} + \mathbf{c}\rangle + \langle \mathbf{y}, \mathbf{b}\rangle + \langle\mathbf{y},\mathbf{c}\rangle&= v + \langle\mathbf{y},\mathbf{c}\rangle \end{align*}$$

We now have common $\mathbf{y}$ terms we can combine using Rule 2:

$$\begin{align*} \langle \mathbf{x}, \mathbf{b} + \mathbf{c}\rangle + \langle \mathbf{\fbox{y}}, \mathbf{b}\rangle + \langle\mathbf{\fbox{y}},\mathbf{c}\rangle&= v + \langle\mathbf{y},\mathbf{c}\rangle\\ \langle \mathbf{x}, \mathbf{b} + \mathbf{c}\rangle + \langle \mathbf{\fbox{y}}, \mathbf{b} + \mathbf{c}\rangle &= v + \langle\mathbf{y},\mathbf{c}\rangle\\ \langle \mathbf{x}, \mathbf{b} + \mathbf{c}\rangle + \langle \mathbf{y}, \mathbf{b} + \mathbf{c}\rangle &= v + \langle\mathbf{y},\mathbf{c}\rangle\\ \end{align*}$$

Now that we have forced the two inner products to have common term $\langle \mathbf{b} + \mathbf{c} \rangle$ on the lhs, we can combine them into one vector using Rule 2 again:

$$\begin{align*} \langle \mathbf{x}, \boxed{\mathbf{b} + \mathbf{c}}\rangle + \langle \mathbf{y}, \boxed{\mathbf{b} + \mathbf{c}}\rangle &= v + \langle\mathbf{y},\mathbf{c}\rangle\\ \langle \mathbf{x} + \mathbf{y}, \boxed{\mathbf{b} + \mathbf{c}}\rangle &= v + \langle\mathbf{y},\mathbf{c}\rangle\\ \langle \mathbf{x} + \mathbf{y}, \mathbf{b} + \mathbf{c}\rangle &= v + \langle\mathbf{y},\mathbf{c}\rangle\\ \end{align*}$$

Therefore,

$$\langle \mathbf{x}, \mathbf{b} + \mathbf{c}\rangle + \langle \mathbf{y}, \mathbf{b}\rangle = v$$

can be rewritten as

$$\langle \mathbf{x} + \mathbf{y}, \mathbf{b} + \mathbf{c}\rangle = v + \langle\mathbf{y},\mathbf{c}\rangle$$

Rule 5: Adding two inner products with unrelated vectors

We can add $\langle\mathbf{a}_1,\mathbf{b}_1\rangle+\langle\mathbf{a}_2,\mathbf{b}_2\rangle$ (which have no vectors in common) and obtain:

$$\langle\mathbf{a}_1,\mathbf{b}_1\rangle+\langle\mathbf{a}_2,\mathbf{b}_2\rangle=\langle\mathbf{a}_1+\mathbf{a}_2,\mathbf{b}_1+\mathbf{b}_2\rangle-\langle\mathbf{a_1},\mathbf{b_2}\rangle-\langle\mathbf{a_2},\mathbf{b_1}\rangle$$

Proof:

$$\begin{align*} \langle\mathbf{a}_1,\mathbf{b}_1\rangle+\langle\mathbf{a}_2,\mathbf{b}_2\rangle&=\langle\mathbf{a}_1,\mathbf{b}_1\rangle+\langle\mathbf{a}_2,\mathbf{b}_2\rangle\\ \langle\mathbf{a}_1,\mathbf{b}_1\rangle+\langle\mathbf{a}_2,\mathbf{b}_2\rangle+\langle\mathbf{a}_1,\mathbf{b}_2\rangle&=\langle\mathbf{a}_1,\mathbf{b}_1\rangle+\langle\mathbf{a}_2,\mathbf{b}_2\rangle+\langle\mathbf{a}_1,\mathbf{b}_2\rangle&&\text{add }\langle\mathbf{a}_1,\mathbf{b}_2\rangle \text{ to both sides}\\ \langle\mathbf{a}_1,\mathbf{b}_1\rangle+\langle\mathbf{a}_2,\mathbf{b}_2\rangle+\langle\mathbf{a}_1,\mathbf{b}_2\rangle&=\langle\mathbf{a}_1,\mathbf{b}_1\rangle+\langle\mathbf{a}_1+\mathbf{a}_2,\mathbf{b}_2\rangle&&\text{combine }\mathbf{b}_2 \text{ terms}\\ \langle\mathbf{a}_1,\mathbf{b}_1\rangle+\langle\mathbf{a}_2,\mathbf{b}_2\rangle+\langle\mathbf{a}_1,\mathbf{b}_2\rangle+\langle\mathbf{a}_2,\mathbf{b}_1\rangle&=\langle\mathbf{a}_1,\mathbf{b}_1\rangle+\langle\mathbf{a}_1+\mathbf{a}_2,\mathbf{b}_2\rangle+\langle\mathbf{a}_2,\mathbf{b}_1\rangle&&\text{add }\langle\mathbf{a}_2,\mathbf{b}_1\rangle\text{ to both sides}\\ \langle\mathbf{a}_1,\mathbf{b}_1\rangle+\langle\mathbf{a}_2,\mathbf{b}_2\rangle+\langle\mathbf{a}_1,\mathbf{b}_2\rangle+\langle\mathbf{a}_2,\mathbf{b}_1\rangle&=\langle\mathbf{a}_1+\mathbf{a}_2,\mathbf{b}_1\rangle+\langle\mathbf{a}_1+\mathbf{a}_2,\mathbf{b}_2\rangle&&\text{combine }\mathbf{b}_1\text{ terms}\\ \langle\mathbf{a}_1,\mathbf{b}_1\rangle+\langle\mathbf{a}_2,\mathbf{b}_2\rangle+\langle\mathbf{a}_1,\mathbf{b}_2\rangle+\langle\mathbf{a}_2,\mathbf{b}_1\rangle&=\langle\mathbf{a}_1+\mathbf{a}_2,\mathbf{b}_1+\mathbf{b}_2\rangle&&\text{combine right-hand side}\\ \langle\mathbf{a}_1,\mathbf{b}_1\rangle+\langle\mathbf{a}_2,\mathbf{b}_2\rangle&=\langle\mathbf{a}_1+\mathbf{a}_2,\mathbf{b}_1+\mathbf{b}_2\rangle-\langle\mathbf{a}_1,\mathbf{b}_2\rangle-\langle\mathbf{a}_2,\mathbf{b}_1\rangle&&\text{subtract }\langle\mathbf{a}_1,\mathbf{b}_2\rangle+\langle\mathbf{a}_2,\mathbf{b}_1\rangle \end{align*}$$

The proof illustrates that it may be handy sometimes to be creative about finding inner products to add to both sides of the equation.

Rule 6: Scalars can be brought inside and outside of an inner product

$z\cdot\langle\mathbf{a},\mathbf{b}\rangle = \langle z\cdot\mathbf{a},\mathbf{b}\rangle = \langle\mathbf{a},z\cdot\mathbf{b}\rangle$

The proof for this statement is left as an exercise for the reader. As a hint, constant terms can be brought in and out of a summation.

This tutorial is part of our series on ZK Bulletproofs.

Q Number Format

Q Number Format Q number format is a notation for describing binary fixed-point numbers. A fixed-point number is a popular design pattern in Solidity for storing fractional values, since the language does not support floating point numbers. Thus, to “capture” the fractional portion of a number, we multiply the fraction by a whole number so […]

Introduction to Proxies

Introduction to Proxies Proxy contracts enable smart contracts to retain their state while allowing their logic to be upgraded. By default, smart contracts cannot be upgraded because deployed bytecode cannot be modified. The only mechanism in the EVM to change bytecode is to deploy a new contract. However, the storage in this new contract would […]

Introducing ticks in Uniswap V3

Introducing ticks in Uniswap V3 This article explains what ticks are in Uniswap V3. Ticks enable gas-efficient accounting of concentrated liquidity, so let’s quickly review concentrated liquidity first. Concentrated liquidity means that liquidity is not necessarily constant across the price curve like Uniswap V2. Liquidity providers can choose segments in the price curve to place […]

How Concentrated Liquidity in Uniswap V3 Works

How Concentrated Liquidity in Uniswap V3 Works This article explains how Uniswap V3 implements concentrated liquidity. We assume the reader already understands Uniswap V2. To understand concentrated liquidity, we first need to precisely define liquidity, which itself depends on understanding the reserves. Reserve The reserve of a token is the balance of a specific tradeable […]

Featured Jobs

RareSkills Researcher

As a RareSkills researcher, you will be contributing to the technical content we post on our website.

Apply Now
Rust/Solana Auditor

We’re looking for someone to design and implement security measures and defense-in-depth controls to prevent and limit vulnerabilities.

Apply Now
Full Stack Developer

We’re looking for a Senior Full-Stack Engineer to play a foundational role in working across the entire offchain stack of products.

Apply Now
Rust Developer

We are seeking a talented Rust Developer to build a robust, scalable blockchain indexers and analytic backend.

Apply Now